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J. Phys. A: Math. Gen. 14 (1981) 777-795. Printed in Great Britain 

Irreducible representations of the symmetry groups of 
polymer molecules I1 

Ivan B BoioviCt and Milan VujiEiC 
Department of Physics, Faculty of Science, The University, PO Box 550, Belgrade, 
Yugoslavia 

Received 30 July 1980 

Abstract. The line groups are the symmetry groups of stereoregular polymer molecules. 
For quantum-mechanical applications one needs their unitary irreducible representations 
(reps). All reps of the line groups whose isogonal point groups are Dnd and Dnh (n = 1, 2, 
3, . . .) are constructed. These reps are derived (directly or by induction) from those of the 
corresponding invariant subgroups of index two, which are the line groups with isogonal 
point groups C"". This paper, together with that by BoioviC, VujiEiC and Herbut, gives the 
reps of all the line groups. 

1. Introduction 

From a study of the symmetries of stereoregular polymer molecules we constructed the 
line groups (VujiEiC et a1 1977, to be referred to as LG) which describe the symmetries of 
three-dimensional objects translationally periodical along a line. Stereoregular poly- 
mers are represented by such a model in most theoretical studies. 

We also derived all the unitary irreducible representations (reps) for the line groups 
whose isogonal point groups are C,, C,,, C n h ,  S2, and D,, n = 1 , 2 , 3 ,  . . . (BoioviC et a1 
1978, to be referred to as I). In this paper we complete the task by deriving the reps for 
the remaining line groups whose isogonal point groups are Dnd and Dnh, n = I, 2,3,  . . .. 

The relevance of the line groups and their reps for physics of polymer molecules was 
discussed briefly in LG and I. One should perhaps add two novel facts concerning the 
band-structure theory of polymers. First, sucessful contacts have been made recently 
between theoretical predictions and x-ray photo-electron spectroscopy experiments 
(Delhalle 1980). The importance of conformation and symmetry was recognised in this 
context. Second, some line-group-theoretical arguments have been, for the first time, 
successfully incorporated into a band-structure computing system (Blumen and Merkel 
1977, Ladik 1978), considerably improving the numerical behaviour of the system. 

Apart from the L21/mcm line group (Tobin 1955, McCubbin 1975) the reps of the 
line groups isogonal to D a d  or Dnh have not been studied before, although there are 
many polymer crystals known to belong to such crystal classes: e.g. poly(1-butene), 
poly(styrene) and poly(methyliviny1 ether) belong to D3d, while poly(viny1 cyclo- 
pentane) was found in D 4 h  and poly(oxymethy1ene) in the D6h class (Miller 1975). 

+ Also at Institute of Physics, Belgrade, Yugoslavia. 
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2. Method of construction of reps 

Every line group L has an invariant subgroup T consisting of a primitive translation and 
all its integral multiples. (In practice T is usually made finite through cyclic boundary 
conditions (cf I); hence one can use the theory of finite groups.) The factor group L/T is 
isomorphic to the point group P isogonal to L. 

The line groups considered in this paper are all of the form 

L- = L++ ( K / O ) L +  (1) 

L'/T = C,, n = 1 , 2 , 3  , . . . .  (2) 

where L+ is one of the line groups isogonal to one of the C,, point groups: 

Furthermore, 

Here, ud is a rotation through 7~ around a horizontal axis forming the angle 7 / 2 n  with 
the vertical mirror plane U, and (Th is the reflection in the horizontal plane. Both U, and 
(+h are involutions: 

( 5 )  u2- d - g h = E  2 

(R-lo)2 = (EIO), (6) 

where E is the identical operation. Consequently, 

so that each L- considered is a semi-direct product of its invariant subgroup L' and the 
two-element subgroup generated by (R-IO): 

L-= L+ A J (7)  
where J = {(EIO), (R-IO)}, Using this fact, one can construct all the reps of L- from the 
reps of L+. 

Let D(R+lv  + t )  =D[(R-IO)(R+lv + t)(R-lO)-'] be the rep of L'conjugate by (R-IO) 
to D(R+lu + t ) ,  where R+ is either CS, or U&;, s = 0,1, .  . , n - 1 and U equals 0 or 4 (cf 
table 1 of LG or tables 4, 5 and 6 of I). The set of all inequivalent reps of L+ can be 
broken up into one-element and two-element classes (orbits) as follows. If D(L+) - 
D(L'), the rep is self-conjugate (or of type 1). If two reps D(L') and D(L+) are not 
equivalent, they are called mutually conjugate reps (or reps of type 2). 

Now, if D(L') is a self-conjugate rep, there exists a unitary matrix Z such that 

B(K+IU + t )  = Z-lD(R+jU + t)Z (8) 
for each element of L'. In view of (6), the matrix Z can be chosen to be an involution 
(Herbut et a1 1980): 

Z 2 = I  (9) 
where I is the unit matrix. The rep D(L') then gives rise to two inequivalent reps D*(L-) 
of L- defined by: 

( l o a )  

( l o b )  

D*(R+lU + t )  = D(R+lU + t )  

D*(R-R+I -0 - t )  = *ZD(R+lv  + t )  
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(Herbut et al 1980), where (R-R+I - v - t )  = (R-IO)(R+/v + t ) .  The reps D*(L-) take 
over the quantum numbers of D(L'). For all the line groups, D(L') is either one- 
dimensional or two-dimensional (cf I). In the first case, 

z = 1 ,  (11) 

which was the only possibility found in I. If D(L') is a two-dimensional rep, note first 
that, being unitary (Zt = 2-l) and involutive (2 =,?-I), 2 is a Hermitian matrix, 
Z t  = 2. Then only two possibilities exist. If D(Lf) is equal to D(L') then 2 is obviously 
trivial in view of (8): 

Z = ( i  !). 
Otherwise, i.e. when D(L+) and D(L') are equivalent but not equal, 2 is (since it is both 
Hermitian and unitary) of the form 

Z = (  sin 8 
exp( -$)cos 8 -sin e 

where 8 and 4 are determined by (8). 

double-dimensional rep of L-, denoted by Q(L-): 
If we have a conjugate pair of reps of L+, D(L+) and D(L'), they together induce one 

v + t )  
D(R+IV + t )  

Q(R+Iu + t )  = ( D i R l o (  
0 D(R+lV + t )  

Q(R-R+l- v - t )  = 

(Herbut et a1 1980). Obviously, Q(R-'R+l- v - t )  = Q[(R-IO)(R'Iu + t ) ] =  
Q(R-JO)Q(R'/V + t ) ,  where 

The quantum numbers of both reps D(LC) and D(L+) constitute together the label for 
a( L-) . 

In conclusion, all the reps of the line groups isogonal to Dnd or D,h, n = 1,2 ,3 ,  . . . , 
can be constructed-either directly via (10a,b) or by induction (14a,b)-using the reps 
of the line groups L' isogonal to C,,, n = 1,2 ,3 ,  , , ,. We therefore reproduce the latter 
reps (in tables 1, 2, 3 and 4) in a form suitable for our present purpose. 

In the actual construction of the reps we also utilise the following useful facts proved 
in I. 

(i) For k = 0 the reps of L- are the same as the reps of its isogonal point group (cf I 

(ii) For 0 < k < T / U  none of the reps of D(L+) is self-conjugate (cf (9) in I) and one 

(iii) For k = T / U  and if L- is symmorphic (i.e. L- = T A B), the reps of L- are obtained 

(10)). 

uses only the induction procedure (14a, b) .  

by multiplying the reps of its isogonal point group by the factor (-1)'. 
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Table 1. The reps of point groups C,,, n = 1,2,3,  . . .; 01 = 2a/n ,  s = 0, 1, . . . , n - 1; 
m = 1 , 2 , .  . . , i ( n  -1) if n = 3 , 5 , 7 , .  . .and m = 1 , 2 , .  , , , f ( n  -2) if n = 4 , 6 , 8 , .  . .; M ( s ) =  

0 ), P =  ( O  ') Note that for n = 1 and n = 2 there are no 
1 0 '  

two-dimensional reps. 

'r For n = 2q = 2 , 4 , 6 ,  . . . only. 

Table 2. The reps of the line groups Lnm, n = 1 ,3 ,5 ,  . . . and Lnmm, n = 2 , 4 , 6 ,  . . . . Here 
- v / a  < k s a / a ,  t = 0, i l ,  +2 , .  , , (or t = 0, *l, *2 , .  . . , * N  if the cyclic boundary condi- 
tion ( E I 2 N +  1) = (EIO) is assumed; cf I); for cy, s, m, M ( s )  and P see the caption to table 1. 
In the cases of Llm and L2mm there are no two-dimensional reps. 

k A o  exp(ikta) exp(ikta) 
LBO exp(ikta) -exp(ikta) 
k E m , - m  exp(ikta)M(s) exp(ikta)PM(s) 
k A q  t (-1)' exp(ikta) (-1)' exp(ikta) 
k B q  'r (- 1)" exp(ikta) -(-l)' exp(ikta) 

t For n = 2q = 2 , 4 , 6 ,  . . . only. 

Table 3. The reps of the line groups Lnc, n = 1 ,3 ,5 ,  . . . and Lncc, n = 2 , 4 , 6 ,  . . .; a, s, m, 
M ( s )  and P as in table 1; t and k as in table 2. In the cases of Llc and L2cc there are no 
two-dimensional reps. 

k A  0 exp(ikta) exp[ik(i+ t)a] 
k B o  exp(i kta)  -exp[ik($+ t )a ]  

k E m , - m  exp(ikta)M(s) exp[ik (4 + t )a ] P M ( S )  
k A q  t (-1)' exp(ikta) (-1)' exp[ik(f+t)a] 
k B q  t (-1)' exp(ikta) -(-I)' exp[ik(f+ r)a] 

t For n = 2q = 2 , 4 , 6 ,  . . . only. 

3. Construction of the reps of the line groups isogonal to D n d ,  n = 1, 2, 3, . . . 
3.1. Point groups D,d 

Dad can be viewed as a semi-direct product of C,, by Di = {E, U,}: 

D n d  = c,, A D = c,, -t Udc,,. 
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Table 4. The reps of the line groups L(fq),mc, n = 2q = 2 , 4 , 6 ,  . . .; a, nz, M ( s )  and P as in 
table 1; t and k as in table 2; r = 0,1, .  . . , q - 1, In the case of L21mc there are no 
two-dimensional reps. 

The reps of Dnd are constructed here by means of the reps of their invariant subgroups 
C,, (which are given in table 1 )  in the manner described in § 2. 

3.1.1. Conjugate reps of  C,, (cf table 1 )  

(a  1 A o ( c i ) = A o ( U d C i U d ' ) = A ~ ( C n ~ ) =  1 =Ao(Ci )  

Ao(avCi) = A o ( U d ( + , C i U d ' ) = A ~ ( a , c n ~ - ~ )  = 1 =Ao((+,Ci). 

Therefore Ao(CnU) is self-conjugate in Dnd and thus it gives rise to two one-dimensional 
reps A$(D,d) as defined by ( l o a ,  b ) ,  with Z = 1 ,  as in (11) .  

( b )  In the same manner one shows that Bo(C,,) is self-conjugate in Dnd so that it 
produces two one-dimensional reps B:(D,d). 

(c) Next 

and 

E m , - m ( ~ u C i ) =  E m , - m ( ~ u C ~ S - l )  =PM(-s  - l ) ,  

where M ( s )  and P are defined in the caption to table 1. But the reps Em,-m(Cnu) and 

Tr M ( s )  = 2 cos(msa) = Tr M(-s)  

In order to obtain Ei,-,(Dnd) by ( l o a ,  6 )  one needs the matrix 2 of the form (13) and 
satisfying (8) ,  which here amounts to 

(C,,) are equivalent, since their characters are equal: 

Tr PM(s)  = 0 = Tr PM(-s - 1).  

ZEm,-m(Ci) = ~ m , - m ( C i ) ~  ( 1 7 a )  

z E m , - m ( a u C i )  = E m , - m ( a u C i ) Z .  (17b)  
Equation ( 1 7 a )  gives sin 6' = 0 whereas (17b)  requires exp(i4) = exp($ima), so that 
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(4 A, (C" ,=AA, (C , s )  ~ ( - 1 ) - ~  = B q ( C i )  

A, (a,C )' = A,  (a,C,"-' ) = (- l)-'-* = B, ( aC: ) 

so that A,(C,,) and B,(C,,) are mutually conjugate, thus giving rise to one two- 
dimensional rep as defined by (14a,b) which will be denoted as E,(Dnd). 

Table 5.  The reps of point groups D,,d, n = 1, 2, 3 , .  . .; for a, s, m, M ( s )  and P see the 
caption to table 1. Note that in the case of Dld there are no two-dimensional reps, while for 
DZd there is only one, E1(DZd). 

t For n = 29 = 2 , 4 , 6 ,  . . . only. 

3.2. Line groups Liim and L ( Z ) 2 m  

This is the first of the two families (i.e. the sets of line groups differing only in the order 
of the main axis) of line groups isogonal to Dnd (cf LG). It consists of symmorphic line 
groups 

Ltim = Lnm + (  dl O)Lnm n = 1 , 3 , 5 , .  . * (19a) 

(19b)  

whose elements are of the form (C: 1 t ) ,  (a,Ci I t ) ,  (UdCi 1 - t ) ,  (UdaCi I - t ) .  (Note that 
the latter two differ by the negative sign in front of t compared with the expressions 
given in LG; the above form is more convenient for our present purpose.) 

L(2n)2m = Lnmm + ( ~ d /  O)Lnmm n = 2 , 4 , 6 , .  . . 
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kEm,-m((+uC; I f )  = kEm,-m((+uciS-l 1 -t) = exp(-ikfa)PM(-s - 1). 
Comparing the characters of -kE,,-,,,(Lnm) and kEm,-m(Lnm) one finds that they are 
equivalent; hence k E m , - m  and -k  Em,-m induce a four-dimensional rep, kGm,-m (LAm), 
n = 3 , 5 , 7  , . . . .  

All that is said in ( a ) ,  ( b )  and ( c )  applies also to L(%)2nt, n = 2 , 4 , 6 ,  . . . . Thus we 
have -tEA0(L(%)2m), k E ~ , ( L ( 5 ) 2 m ,  n = 2 , 4 , 6 ,  . . . and - t G m , - m ( L ( 5 ) 2 m ) ,  n = 
4 , 6 , 8 , .  . . . In addition, for n = 2 , 4 , 6 , .  . , , we have 

- k  

- k  

(4 kdq(CiIC)=kAq(Cn4/-C)= (-I)-' exp(-ikta)=-kBq(CSn\f) 

kdq((+uCi I t )  kA,((+,C,"-' 1 -t) = (-I)-'-' exp(-ikta) = -kB,((+,C; 1 t ) ,  

giving rise to - tE; ; (L(5)2m) .  

gives -tE&L(%)2m). 

by multiplying those of Dnd (cf table 5 )  by (-1)'. 

( e )  Analogously, kBq(Ci 1 f) = -kAq(Ci I C)  and kBq(a,Ci 1 f) = -kA,((+,C; I C), which 

The line groups considered are symmorphic and their reps at k = r / a  are obtained 

3.3. Line groups LAC and L ( 5 ) 2 c  

The second family of line groups isogonal to Dnd consists of non-symmorphic line 
groups (cf LG): 

Liic = Lnc + ( ~ d j  O)Lnc 

~ ( 5 ) 2 c  = Lncc + ( u ~ I  O)Lncc 

n = 1 , 3 , 5 ,  . . . (20a 1 
(206)  

whoseelementsareoftheform(Ci/t), (uUCS,1;+t), ( U C I - t ) ,  (U,(+,C",-$-f). (The 
latter two differ by the negative sign in front of translations from those given in LG.) 

n = 2 , 4 , 6 , .  . . 

3.3.1. Conjugate reps of Lnc and Lncc (cf  table 3 )  

( a )  for 0 < k < n-/a one has 

k A O ( ( 1 i l  C)=kAo(C~'I--f)=exp(-ikCa)=-kAo(C~ i f )  
and 

kAO((+"CiI;+ t ) = k A ~ ( ( + ~ C i ' - '  /-$-f)=exp[-ik(;+C)U]=-kAo((+,Ci/i+f) 

so that kAO and -kAO induce a two-dimensional rep, -:EAo. 
( b )  Similarly, k B O  and - k B O  induce - ;EBo.  
( c )  Next 

kEm,-m(ci  I f) = kEm,-m(Cis 1 - C )  = exp(-ikta)M(-s) 

k~m,-m((+"c~I:+t)=kEm,-m((+uCnS-l l-$-t)=exp[-ik(i+t)U]Pkf(-S -1). 
- 

Comparing the characters one finds that k E m , - m  - 
induce a four-dimensional rep -tGm,-m. 

SO that k E m , - m  and - k E m , - m  
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Table 6. The reps of the line groups LAm, n = 1 , 3 , 5 ,  . . . and L ( 5 ) 2 m ,  n = 2 , 4 , 6 ,  . . .; a ,  s, 
M ( s )  and P as in table 1;  t as in table 2 ;  O< k < a / a ;  

exp(ikta) ) K' ( t )  = ( exp(ikta) 
0 exp(-ikta) 

For k = 0 the reps of these line groups coincide with those of Dnd and can be found in table 5 .  
Thus, oAo (LAm) = Ao(Dnd), etc. Note that Lim ( n  = 1) and L32m ( n  = 2) have neither 
-;Gm,-,, nor ,,iaE;,-,,, reps. 

m 

K O )  
-K(O 

0 ) (exp(ikf;)PM(s) 0 
exp(-ikfa)M(-s) exp(-ikta)PM(-s - 1) 

( - I ) [  
-(-l)[ 

(-1) 'PM(s) 
( - l ) S K ' ( t )  

- ( - l ) 'K ' ( f )  

P K ( t )  
-PK( t )  

0 exp(-ikta)PM(-s - 1 )  
(exp(ikta)PM(s) 0 

*(-lS 
F(- lS  
*(-l)[M(s +;) 

( - 1 1 9 3 ~ y t )  
- ( - l ) 'PK' ( t )  

t For n = 2q = 2 , 4 , 6 ,  . . . only. 

Finally, in the case when n = 29 = 2 , 4 , 6 ,  . . . , one also has 

giving rise to -iE;$L('ZT1)2cj. 
(e) Similarly, k B q  = - k A q ,  so that one induces p ~ E ~ $ L ( 2 n ) 2 c ) .  
Since the groups we are considering now are non-symmorphic ones, a similar 

analysis of conjugate reps is required for k = T / U .  
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(f 1 ,,Ao(c: I t)  = (-1)-' = ,/aBo(CS, It) 
,/,Ao(a,CS,Ii+t) = -i(-l)'= , /aBO(~I;CS,li+t) 

so that we obtain ,/.Ei. 

-i(-l)'PM(-s - 1). Thus ,I~E,,,,-~ -,laEm,-,,,, i.e. it is self-conjugate and gives rise to 
two reps , /aEZ,-m as defined by (10a,b), where the matrix z is found according to (8) to 
be 

(g) Next, , / a E m , - m ( C ;  I t )  = (-1IrM(-s) and r / a E m , - m ( a v C ;  I $ +  t )  = 

Again, for n = 2q = 2 , 4 , 6 ,  . . . , one has some additional reps: 

( h )  ,/aAq(C~~t)=(-l)-"-'=,/aAq(C",t) 

Table 7. The reps of the line groups LEc, n = 1 ,3 ,5 ,  . . . and L(%)2c, n = 2 , 4 , 6 ,  . . .; cy, s, m, 
M ( s )  and P as in table 1; t as in table 2; k,  K(t) and K'(t) as in table 6 ;  

exp(imsa) 

For k = 0 reps see the remark in the caption to table 6 .  Note that L i e  and L42c have neither 
- iGm,-m nor r/nEz...m reps. 

- k  

- k  
k E A o  

- i G m . - m  

i(-l)rPM(s) 
(-l)"K'(;+t) 

-(-l)W(i+ t )  
i(-l)s+r 

-i(- ly+C 

- k  

- k  
k E A o  

k E B o  

- i G m , - m  

*i(-l)rPM'(s-+) 
(-1)'PK (t)  
(- 1)'PK ( t )  

* ( - l ) S + '  

* ( - l ) S + f  

F(-l)'M'(S +f) 

-(-lyPK'(i+ t) 
(-l)"PK'($+ t)  

*i(-I)s+r 
Ti(-I)'+' 

t For n = 2q = 2 ,4 ,6 ,  . . . only. 
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and 
1 n/aAq(u,~i  I T +  t )  = -i(-1)-5-1-f = n/aAq (c+,Cfl I + t )  

so that one has , laA$(L(5)2c) ,  where 2 = 1 as in (11). 

Z=1.  
( i )  Similarly one finds that x / a B q  = 71/aBq, giving rise to ,laB$(L(%2c), also with 

4. Construction of the reps of the line groups isogonal to Dnh, n = 1,2,3,. . . 
4.1. Point groups D n h  

Dnh is a direct product of C,, and Clh = {E, Uh}: 

D,h =c,, @ Cih =c,, + u h C n u ,  (21)  

which implies q,Ci?,ui' = Ci?, and CrhU,CiUi' = u,Ci, so that every rep of c,, is equal 
to its rep conjugate by U h  in D n h .  Thus all the reps of D,h are obtained from those of C,, 
(which are given in table 1) directly via (lOa,b) with Z trivial. 

Table 8. The reps of point groups D n h ,  n = 1, 2, 3 , .  . . . For a, s, m, M ( s )  and P see the 
caption to table 1, Note that in the case of Dlh and D z ~  there are no two-dimensional reps. 

t For n = 29 = 2 , 4 , 6 ,  . . only 

4.2. Line groups L(%)2m and Lnlmmm 

This is the first family of line groups isogonal to D n h .  The family consists of symmorphic 
line groups (cf LG): 

L ( Z ) 2 m  = Lnm +(uhl O)Lnm n = 1 , 3 , 5 , .  . , (22a)  

(22b)  

with elements of the form ( C i  I t ) ,  (u,CA 1 t ) ,  ( a h C i  1 - t ) ,  (uhu,Ci 1 -t) .  (Compared with 
LG, there is a change t + --t in the latter two.) 

Ln/mmm = Lnmm + (q, O)Lnmm n = 2 , 4 , 6 , .  , , 

4.2.1. Conjugate reps of Lnm and Lnmm (cf table 2 ) .  Since 

(ah1  oxci I t ) ( U h l  = (c; I - t )  

and 

( u h  I o)(uuci 1 t ) ( u h  lo)-' = ( f l n c i  I - t ) ,  

one easily finds reps of Lnm and Lnmm conjugate by (uh10) in L(%)2m and 
Lnlmmm, respectively. Namely, the reps of Lnm and Lnmm are of the form (cf tables 1 
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and 2) ,D,(RIt)=exp(ikta)D,(R), so that here k&(RIt)=@,(R/-t)= 
exp(-ikta)D,(R) = -,Dm(RI t ) .  Hence for 0 < k < r / a  we have conjugate pairs of 
reps of Lnm (and Lnmm) with opposite k, which induce via (14a,b) reps of L ( 5 ) 2 m  
(and Lnlmmm). As the line groups considered are symmorphic, their k = r / a  reps are 
obtained by multiplying those of D,h (cf table 8) by (-l)f. 

Table 9. The reps of the line groups L ( 5 ) 2 m ,  n = 1, 3,5, . . . and Ln/mmm, n = 2 , 4 , 6 ,  . . . . 
For a, s, m, M ( s )  and P see table 1, for t see table 2 and for k, K ( t )  see table 6 .  For k = 0 the 
reps of the line groups considered coincide with those of Dnh, which are given in table 8; thus 
one has oAo(L(%)2m) = Ao(Dn,,), etc. Note that L32m (i.e. for n = 1) and L2,”mm (i.e. for 
n = 2) have neither -tGm,-m nor T i a E : , - m  reps. 

PK(t) 
-PK(t) 

0 exp( -i kta ) PM( s) 
(exp(ikta)PM(s) 0 

*(-l)‘ 
T(- l ) l  
*(-l)’PM(s) 

(- 1)’PK ( t )  
- (- 1)‘PK ( t ) 
* ( - l ) S + t  

T(- l )S+!  

+ For n = 2q = 2 , 4 , 6 , .  . . only. 

4.3. Line groups L(%)2c and Lnlmcc 

This family consists of non-symmorphic line groups which contain glide planes: 

~ ( 5 1 2 ~  = Lnc + (q, O)Lnc 

Lnlmcc = Lncc + ( a h 1  O)Lncc 

n = 1 , 3 , 5 , .  . . (23a) 

(236) n = 2 , 4 , 6 , .  , . , 
Their elements are of the farm (Ci  1 t ) ,  (a,Ci I $ +  t ) ,  (ahCi I - t ) ,  (UhavCi  1-1- t ) .  (Note 
the change of the sign of translations in the latter two elements as compared with that 
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found in LG. Also, it seems preferable to write Lnlnzcc, since every vertical plane here is 
a glide plane.) 

4.3.1. Conjugate reps of Lnc and Lncc (cf  table 3 )  

( a )  For O <  k < r / a ,  the discussion is quite analogous to that given in § 4.2.1. 
( 6 )  However, for k = r / a  oqe has to examine each rep of Lnm and Lnmm. Thus 

and w/a&(auCi I + +  t )  = ,/,&(CS, I t )  = T / A o ( C ~  I - t )  = (-1)-' = ,/,Bo(C; 1 t ) ,  
w/aAO(auCS,/ -7 - t )  = -i(-l)-' = ,/aBO(auCi I z+  t ) ,  thus giving rise to ,/aEo. 1 

( c )  v / a E m , - m ( C S ,  1 t )  = ( - 1 ) - ' ~ ( s )  

and 

n/aEm,-m(au~;  I + +  t )  = -i(-I)-'PM(s), 
- 

so that the character is the same as before conjugation; hence ,,aEm,-,,, - ,I~E,,,,-~. The 
matrix 2 is of the form (13 )  and has to satisfy (8), which here specialises into 

Z M ( s )  = M ( s ) Z  

-ZPM(s) = PM(s)Z,  

and 

which gives 

2=('  0 -1 O )  ' 

so that Z M ( s )  = M'(s) .  
( d )  As in ( a ) ,  one finds that ,laAq = ,laBq, thus inducing ,/aEq. 

4.4. Line groups L(Zq),/mcm 

The last family of line groups isogonal to Dnh consists of non-symmorphic groups: 

L(2q)qlmcm = L(2q)qmc + (ma 0 ) W q ) q m c  q = 1 , 2 , 3  , . . . .  (25 )  

Their elements are of the form (CZ: 1 t ) ,  (C2q I ? +  t ) ,  (auCi:) t ) ,  (auC&+' I;+ t ) ,  
(a&$: I - t ) ,  (a&:+' 1 -!i- t ) ,  (ahauC;: I - f ) ,  (~rha,Ci:+~ 1-3- t ) ,  where r = 
0, 1, . . . , q - 1. (In LG the translations have a positive sign. All indices 2r were 
misprinted there as 2,.) 

2r+1 1 

4.4.1. Conjugate reps of L(2q),mc (cf table 4 )  

( a )  For 0 < k < r / a  conjugate pairs of reps of L(2q),mc (with opposite values of k) 
induce via (14a,b) reps of L ( 2 q ) J m c m ;  the argument is quite analogous to that of 
0 4.2.1. 

w / d o ( ~ i :  I t )  = T / a & ( ~ u ~ i :  I t )  = ( - I ) - '  = ,/aAq(Ci: I t )  = w/aAq(auCii I t )  

,laAO(CZq ls+t)  = ,/a&(auC2q i$+t)  = -i(-l)-'= w/aAq(Ci:+l 1$+t) 

( b )  For k = r / a  we have 

2 r + l  1 2 r + l  1 

2 r - c l  1 
= w/aAq ( U u C Z q  I 5 + t ) ,  

thus inducing a two-dimensional rep, w/a E;;. 
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Table 1Q. The reps of the line groups L(5)2c,  n = 1 , 3 , 5 ,  . . . and Ln/mcc, n = 2,4,6,  . . . . 
For a, s, m, M ( s )  and P see table 1 ,  for t see table 2, for k ,  K ( t )  see table 6 and for M'(s )  see 
table 7 .  For k = O  reps see the comment in the caption to table 9. Note that L22c and 
L2/mcc have neither -iG,,,-,,, nor nlaE&,, reps. 

- k  

- k  
k E A o  

kEBo 

k G m , - m  
-k  

i(-I)'PM(s) 
(-1)'K ($+ t )  

- ( - l ) 'K ( f+  t )  

-k  

- k  
kEAo 

k E B o  

-k  
k G m , - m  

*(-l)[M'(s) 
(-1)'PK ( t )  
(- 1)'PK ( t )  

P K ( f + t )  
-PK($+t) 

0 exp[-ik(f+ t ) a ] ~ ~ ( s )  

(exp[ik(f + t )a ]PM(s )  0 
0 -i 

(-l)'( o) 
Fi(-I)'PM'(s) 

(-l) 'PK($+t) 
-(-l) 'PK(i+ t )  

) ( - l ) s + f ( o  -i 
1 0  

t For n = 24 = 2 , 4 , 6 ,  . . . only. 

(c) Similarly, ,/aBO = I ~ / ~ B ~ ,  giving together ,,laE;;. 

(4 ? r / a E m , - m ( C : G  1 t )  = ( - 1 ) - f ~ ( 2 r )  

and 

T / a ~ m , - m ( ~ i ; + l  Ii+t) = - i ( -1) - '~(2r+  I), 

while the other matrices of ,/,Em,-,(L(2q),mc) have trace equal to zero and need not 
be considered in what follows. To find m' such that ,/aEm,-m - ,/aEm,,-m' one has to 
equal their characters: 

(-1)'2 cos(2rma) = (-1)'2 cos(2rm'a) 

-i(-I)f cos[(2r + l )ma]  = i(-1)~2 cos[(% + 1)m'aI 

where m, m' = 1 ,2 ,  . . . , q - 1 (cf the caption to table 1); the solution is m' = q - m. 
Since the rep , / aEm, -m is a self-conjugate one iff m' = m, that happens only for q even, 
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T. 
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.. 
v s 
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h 
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r 
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h 
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I 
h 
3 

v 
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I 
v E 
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N s a, 
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h 
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0 3  
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'i 

- 1 0  

0 3  
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I 
I 

h 
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v 
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3 z o  

h 
L 
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0 -  

w 
I 

8 
h 
3 

v 

- 3 3  

1 0  
I 
Y 
t 
I 

-H 

h 
3 

v 

- 0 3  

3 0  t 
h 
3 

I 
ii 
v 
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i.e. for q = 2v, v = 1,2 ,  . . . , m' = m = v. To derive the rep rr,aEu,-v one has to deter- 
mine a matrix Z of the form (13) and satisfying (8), which here reads 

~ ( - - 1 ) ' ~ ( 2 r )  = (-1)'M(2r)Z 

~ i ( - I ) ' ~ ( 2 r  + I) = -i(--l)'M(2r+ 1)Z 

Z(-l) 'PM(2r) = (-1)'PM(2r)Z 

~ i ( - 1 ) ' ~ ~ ( 2 r  + 1) = i ( - I ) ' P ~ ( 2 r +  I)Z,  

where the latter two lines correspond to (a,C;; 1 t )  and (ruC;;+' It+ t )  respectively. 
Since for m = U, n = 2q = 4v one has 

M(2r)=(-l)$, 1 0  1) and M(2r+ l )= ( - l ) ( ;  -,), 0 
1 

one easily finds that 

z = (  0 1  ) = P  
1 0  

(e) In all other cases m ' = q - m  # m and the two reps, T,aE,,,,-m and .rr,aEm,,-m,, 
m' = q - m, induce via (14a,b) a four-dimensional rep rr,aG:,'~-Z' of L(2q)Jmcm. 
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Note. The following corrections should be made to the tables of BoioviC et a1 (1978). 

Table no Stands Should read 
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